Drilling in cortical bone: a finite element model and experimental investigations.
نویسندگان
چکیده
Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill-bit breakthrough, excessive heat generation, and mechanical damage to the bone. An experimental and computational study of drilling in cortical bone has been conducted. A 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling has been developed. The model incorporates the dynamic characteristics involved in the process along with geometrical considerations. An elastic-plastic material model is used to predict the behaviour of cortical bone during drilling. The average critical thrust forces and torques obtained using FE analysis are found to be in good agreement with the experimental results.
منابع مشابه
FEM investigation of drilling conditions on heat generation during teeth implantation
Abstract The first step of implanting teeth is to drill a hole in the jaw bone. Excessive temperature produced during drilling is one of the destructive factors for bony tissue. If the temperature generation during surgical drilling exceeds the critical temperature, it could lead to osteonecrosis. This research intends to study drilling parameters such as drilling speed, feed rate, cooling con...
متن کاملAn investigation of tensile strength of Ti6Al4V titanium screw inside femur bone using finite element and experimental tests
The geometric optimization of orthopedic screws can considerably increase their orthopedic efficiency. Due to the high geometric parameters of orthopedic screws, a finite element simulation is an effective tool for analyzing and forecasting the effect of the parameters on the load-bearing capacity of different types of screws and bones. Thus, in the present study, the tensile strength of a typi...
متن کاملTemperature rise of alveolar bone during dental implant drilling using the finite element simulation
In this study, a three-dimensional elastic-plastic dynamic finite element model is used to simulate the alveolar bone temperature rise during dental implant drilling. An experimental setup was designed to verify the feasibility of the proposed dynamic finite element model. The peak bone temperature within the alveolar bone is investigated through both simulations and experiments. The results in...
متن کاملمقایسه بیومکانیکی ایمپلنت دندانی تیتانیوم خالص با زیرکونیوم -5/2% نایوبیوم پس از کاشت به روش اجزای محدود
Background and Aims: Improving dental implantation conditions in order to reduce the failure is always desirable for researchers. The aim of this study was to compare two different materials of dental implants from the viewpoint of biomechanical effect after placement and loading in the mandible. Materials and Methods: A 3D model of mandible was designed in the MIMICS 10.01 software. Then,...
متن کاملFinite Element Analysis and Experimental Investigation on the Conventional and Vibration Assisted Drilling
In this research, finite element analysis of the conventional drilling and vibration assisted drilling is carried out. The ABAQUS software is employed for FE analysis. The Johnson-Cook models for both plastic deformation and damage are employed for FE simulation.The results of the FE analysis are then verified with experimental results in both conventional and vibration assisted drilling on Al ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 42 شماره
صفحات -
تاریخ انتشار 2015